Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(17): 25424-25436, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472582

RESUMEN

Laboratory ecotoxicological tests are important tools for the management of environmental changes derived from anthropogenic activities. Folsomia candida is usually the model species used in some procedures. However, this species may not be sufficiently representative of the sensitivity of the other collembolan species. This study aimed to evaluate (i) the effects of soils naturally rich in potentially toxic elements (PTE) and soil characteristics on the reproduction and survival of different collembolan species, (ii) whether the habitat function of these soils is compromised, and (iii) to what extent F. candida is representative of the other collembolan species. For this, reproduction tests with six collembolan species were conducted in 14 different samples of soils. In general, collembolan reproduction was not completely inhibited in none of the natural tested soils. Even soils with high pollution load index values did not negatively affect collembolan reproduction for most of the species. In contrast, the lowest collembolan reproduction rates were found in a visually dense soil (lowest volume/weight ratio), highlighting that soil attributes other than total PTE concentration also interfere in the reproduction of collembolans. Our results support the idea that the F. candida species might not be representative of other collembolan species and that laboratory tests to assess soil contaminations should be conducted using diverse collembolan species.


Asunto(s)
Artrópodos , Contaminantes del Suelo , Animales , Suelo , Contaminantes del Suelo/análisis , Contaminación Ambiental , Reproducción
2.
Environ Monit Assess ; 196(4): 385, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507123

RESUMEN

Soil quality monitoring in mining rehabilitation areas is a crucial step to validate the effectiveness of the adopted recovery strategy, especially in critical areas for environmental conservation, such as the Brazilian Amazon. The use of portable X-ray fluorescence (pXRF) spectrometry allows a rapid quantification of several soil chemical elements, with low cost and without residue generation, being an alternative for clean and accurate environmental monitoring. Thus, this work aimed to assess soil quality in mining areas with different stages of environmental rehabilitation based on predictions of soil fertility properties through pXRF along with four machine learning algorithms (projection pursuit regression, PPR; support vector machine, SVM; cubist regression, CR; and random forest, RF) in the Eastern Brazilian Amazon. Sandstone and iron mines in different chronological stages of rehabilitation (initial, intermediate, and advanced) were evaluated, in addition to non-rehabilitated and native forest areas. A total of 81 soil samples (26 from sandstone mine and 55 from iron mine) were analyzed by both traditional wet-chemistry methods and pXRF. The available/exchangeable contents of K, Ca, B, Fe, and Al, in addition to H+Al, cation exchange capacity at pH = 7, Al saturation, soil organic matter, pH, sum of bases, base saturation, clay, and sand were accurately predicted (R2 > 0.70) using pXRF data, with emphasis on the prediction of Fe (R2 = 0.93), clay content (R2 = 0.81), H+Al (R2 = 0.81), and K+ (R2 = 0.85). The best predictive models were developed by RF and CR (86%) and when considering pXRF data + mining area + stage of rehabilitation (73%). The results highlight the potential of pXRF to accurately assess soil properties in environmental rehabilitation areas in the Amazon region (yet scarcely evaluated under this approach), promoting a more agile and cheaper preliminary diagnosis compared to traditional methods.


Asunto(s)
Contaminantes del Suelo , Suelo , Suelo/química , Arcilla , Brasil , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Hierro/análisis
3.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068998

RESUMEN

Open pit mining can cause loss in different ecosystems, including damage to habitats of rare and endemic species. Understanding the biology of these species is fundamental for their conservation, and to assist in decision-making. Sporobolus multiramosus is an annual grass endemic to the Amazon canga ecosystems, which comprise rocky outcrop vegetation covering one of the world's largest iron ore reserves. Here, we evaluated whether nitric oxide aids S. multiramosus in coping with water shortages and examined the physiological processes behind these adaptations. nitric oxide application improved the water status, photosynthetic efficiency, biomass production, and seed production and germination of S. multiramosus under water deficit conditions. These enhancements were accompanied by adjustments in leaf and root anatomy, including changes in stomata density and size and root endodermis thickness and vascular cylinder diameter. Proteomic analysis revealed that nitric oxide promoted the activation of several proteins involved in the response to environmental stress and flower and fruit development. Overall, the results suggest that exogenous nitric oxide has the potential to enhance the growth and productivity of S. multiramosus. Enhancements in seed productivity have significant implications for conservation initiatives and can be applied to seed production areas, particularly for the restoration of native ecosystems.


Asunto(s)
Óxido Nítrico , Poaceae , Óxido Nítrico/metabolismo , Poaceae/metabolismo , Ecosistema , Agua/metabolismo , Proteómica , Semillas/metabolismo
4.
Microorganisms ; 11(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838412

RESUMEN

Lateritic duricrusts cover iron ore deposits and form spatially restricted, unique canga ecosystems endangered by mining. Iron cycling, i.e., the dissolution and subsequent precipitation of iron, is able to restitute canga duricrusts, generating new habitats for endangered biota in post-mining landscapes. As iron-reducing bacteria can accelerate this iron cycling, we aim to retrieve microbial enrichment cultures suitable to mediate the large-scale restoration of cangas. For that, we collected water and sediment samples from the Carajás National Forest and cultivated the iron-reducing microorganisms therein using a specific medium. We measured the potential to reduce iron using ferrozine assays, growth rate and metabolic activity. Six out of seven enrichment cultures effectively reduced iron, showing that different environments harbor iron-reducing bacteria. The most promising enrichment cultures were obtained from environments with repeated flooding and drying cycles, i.e., periodically inundated grasslands and a plateau of an iron mining waste pile characterized by frequent soaking. Selected enrichment cultures contained iron-reducing and fermenting bacteria, such as Serratia and Enterobacter. We found higher iron-reducing potential in enrichment cultures with a higher cell density and microorganism diversity. The obtained enrichment cultures should be tested for canga restoration to generate benefits for biodiversity and contribute to more sustainable iron mining in the region.

5.
Ann Bot ; 131(2): 261-274, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36048726

RESUMEN

BACKGROUND AND AIMS: The Atlantic Forest biodiversity hotspot is a complex mosaic of habitat types. However, the diversity of the rain forest at the core of this complex has received far more attention than that of its marginal habitats, such as cloud forest, semi-deciduous forest or restinga. Here, we investigate broad-scale angiosperm tree diversity patterns along elevation gradients in the south-east Atlantic Forest and test if the diversity of marginal habitats is shaped from the neighbouring rain forest, as commonly thought. METHODS: We calculated phylogenetic indices that capture basal [mean pairwise phylogenetic distance (MPD)] and terminal [mean nearest taxon distance (MNTD)] phylogenetic variation, phylogenetic endemism (PE) and taxonomic and phylogenetic beta diversity (BD and PBD) for 2074 angiosperm tree species distributed in 108 circular sites of 10 km diameter across four habitat types i.e. rain forest, cloud forest, semi-deciduous forest and coastal vegetation known as restinga. We then related these metrics to elevation and environmental variables. KEY RESULTS: Communities in wetter and colder forests show basal phylogenetic overdispersion and short phylogenetic distances towards the tips, respectively. In contrast, communities associated with water deficit and salinity show basal phylogenetic clustering and no phylogenetic structure toward the tips. Unexpectedly, rain forest shows low PE given its species richness, whereas cloud and semi-deciduous forests show unusually high PE. The BD and PBD between most habitat types are driven by the turnover of species and lineages, except for restinga. CONCLUSIONS: Our results contradict the idea that all marginal habitat types of the Atlantic Forest are sub-sets of the rain forest. We show that marginal habitat types have different evolutionary histories and may act as 'equilibrium zones for biodiversity' in the Atlantic Forest, generating new species or conserving others. Overall, our results add evolutionary insights that reinforce the urgency of encompassing all habitat types in the Atlantic Forest concept.


Asunto(s)
Ecosistema , Magnoliopsida , Bosques , Evolución Biológica , Biodiversidad , Filogenia
6.
Artículo en Inglés | MEDLINE | ID: mdl-36361325

RESUMEN

Mimosa acutistipula is endemic to Brazil and grows in ferruginous outcrops (canga) in Serra dos Carajás, eastern Amazon, where one of the largest iron ore deposits in the world is located. Plants that develop in these ecosystems are subject to severe environmental conditions and must have adaptive mechanisms to grow and thrive in cangas. Mimosa acutistipula is a native species used to restore biodiversity in post-mining areas in canga. Understanding the molecular mechanisms involved in the adaptation of M. acutistipula in canga is essential to deduce the ability of native species to adapt to possible stressors in rehabilitating minelands over time. In this study, the root proteomic profiles of M. acutistipula grown in a native canga ecosystem and rehabilitating minelands were compared to identify essential proteins involved in the adaptation of this species in its native environment and that should enable its establishment in rehabilitating minelands. The results showed differentially abundant proteins, where 436 proteins with significant values (p < 0.05) and fold change ≥ 2 were more abundant in canga and 145 in roots from the rehabilitating minelands. Among them, a representative amount and diversity of proteins were related to responses to water deficit, heat, and responses to metal ions. Other identified proteins are involved in biocontrol activity against phytopathogens and symbiosis. This research provides insights into proteins involved in M. acutistipula responses to environmental stimuli, suggesting critical mechanisms to support the establishment of native canga plants in rehabilitating minelands over time.


Asunto(s)
Ecosistema , Mimosa , Proteómica , Biodiversidad , Plantas , Brasil
7.
BMC Genomics ; 23(1): 313, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439930

RESUMEN

BACKGROUND: Canga is the Brazilian term for the savanna-like vegetation harboring several endemic species on iron-rich rocky outcrops, usually considered for mining activities. Parkia platycephala Benth. and Stryphnodendron pulcherrimum (Willd.) Hochr. naturally occur in the cangas of Serra dos Carajás (eastern Amazonia, Brazil) and the surrounding forest, indicating high phenotypic plasticity. The morphological and physiological mechanisms of the plants' establishment in the canga environment are well studied, but the molecular adaptative responses are still unknown. To understand these adaptative responses, we aimed to identify molecular mechanisms that allow the establishment of these plants in the canga environment. RESULTS: Plants were grown in canga and forest substrates collected in the Carajás Mineral Province. RNA was extracted from pooled leaf tissue, and RNA-seq paired-end reads were assembled into representative transcriptomes for P. platycephala and S. pulcherrimum containing 31,728 and 31,311 primary transcripts, respectively. We identified both species-specific and core molecular responses in plants grown in the canga substrate using differential expression analyses. In the species-specific analysis, we identified 1,112 and 838 differentially expressed genes for P. platycephala and S. pulcherrimum, respectively. Enrichment analyses showed that unique biological processes and metabolic pathways were affected for each species. Comparative differential expression analysis was based on shared single-copy orthologs. The overall pattern of ortholog expression was species-specific. Even so, we identified almost 300 altered genes between plants in canga and forest substrates with conserved responses in the two species. The genes were functionally associated with the response to light stimulus and the circadian rhythm pathway. CONCLUSIONS: Plants possess species-specific adaptative responses to cope with the substrates. Our results also suggest that plants adapted to both canga and forest environments can adjust the circadian rhythm in a substrate-dependent manner. The circadian clock gene modulation might be a central mechanism regulating the plants' development in the canga substrate in the studied legume species. The mechanism may be shared as a common mechanism to abiotic stress compensation in other native species.


Asunto(s)
Hierro , Suelo , Aclimatación , Bosques , Plantas , Suelo/química , Transcriptoma
8.
Plants (Basel) ; 11(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35270182

RESUMEN

Dioclea apurensis Kunth is native to ferruginous rocky outcrops (known as canga) in the eastern Amazon. Native cangas are considered hotspots of biological diversity and have one of the largest iron ore deposits in the world. There, D. apurensis can grow in post-mining areas where molecular mechanisms and rhizospheric interactions with soil microorganisms are expected to contribute to their establishment in rehabilitating minelands (RM). In this study, we compare the root proteomic profile and rhizosphere-associated bacterial and fungal communities of D. apurensis growing in canga and RM to characterize the main mechanisms that allow the growth and establishment in post-mining areas. The results showed that proteins involved in response to oxidative stress, drought, excess of iron, and phosphorus deficiency showed higher levels in canga and, therefore, helped explain its high establishment rates in RM. Rhizospheric selectivity of microorganisms was more evident in canga. The microbial community structure was mostly different between the two habitats, denoting that despite having its preferences, D. apurensis can associate with beneficial soil microorganisms without specificity. Therefore, its good performance in RM can also be improved or attributed to its ability to cope with beneficial soil-borne microorganisms. Native plants with such adaptations must be used to enhance the rehabilitation process.

9.
Environ Monit Assess ; 194(4): 256, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35257264

RESUMEN

Open-cast iron mining causes drastic disturbances in soil properties. Recovery of soil chemical and physical properties is essential for successful revegetation and landscape rehabilitation. To identify changes in soil properties during the mining and revegetation process, soil samples were collected from undisturbed sites represented by forest and ferriferous savannas stocking above iron outcrops, called "cangas," in open-pit benches, and in rehabilitation chronosequences of iron waste piles in the Carajás Mineral Province (CMP), Eastern Amazon, Brazil. The samples were analyzed for chemical and physical properties. Our results showed that iron mining operations resulted in significant alteration of the chemical soil properties when forest and canga vegetation are suppressed to form open-pit benches or waste piles in the CMP. Mining substrates showed lower contents of soil organic matter (SOM) and nutrients than undisturbed areas of forests and cangas. In order to achieve the success of revegetation, nutrients have been added prior to plant establishment. We have demonstrated how soil fertility changes along with mineland rehabilitation, and the variation among chronosequence was attributable mainly due to contents of SOM, K, and B in the soil. The slight improvement of SOM found in rehabilitated waste piles reinforces the notion that recovery of soil quality can be a slow process in iron minelands in the CMP.


Asunto(s)
Contaminantes del Suelo , Suelo , Monitoreo del Ambiente , Bosques , Hierro , Minería , Suelo/química
10.
Environ Geochem Health ; 44(6): 1767-1781, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34676510

RESUMEN

Mining activity is of great economic and social importance; however, volumes of metallic ore tailings rich in potentially toxic elements (PTEs) may be produced. In this context, managing this environmental liability and assessing soil quality in areas close to mining activities are fundamental. This study aimed to compare the concentrations of PTEs-arsenic (As), barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn)-as well as the fertility and texture of Cu tailings and soils of native, urban and pasture areas surrounding a Cu mining complex in the eastern Amazon. The levels of PTEs were compared with soil prevention values, soil quality reference values, global average soil concentrations and average upper continental crust concentrations. The contamination factor (CF), degree of contamination (Cdeg), potential ecological risk index (RI), geoaccumulation index (Igeo) and pollution load index (PLI) were calculated. The levels of Co, Cu and Ni in the tailings area exceeded the prevention values, soil quality reference values and average upper continental crust concentrations; however, the tailings area was considered unpolluted according to PLI and RI and presented a low potential ecological risk. The high concentrations of PTEs are associated with the geological properties of the area, and the presence of PTEs-rich minerals supports these results. For the urban and pasture areas, none of the 11 PTEs analyzed exceeded the prevention values established by the Brazilian National Environment Council.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , China , Cobre , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Minería , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
11.
Plants (Basel) ; 10(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922282

RESUMEN

Native species may have adaptive traits that are advantageous for overcoming the adverse environmental conditions faced during the early stages of mine land rehabilitation. Here, we examined the nitrogen (N) growth responses of two native perennial grasses (Axonopus longispicus and Paspalum cinerascens) from canga in nutrient-poor iron mining substrates. We carried out vegetative propagation and recovered substantial healthy tillers from field-collected tussocks of both species. These tillers were cultivated in mining substrates at increasing N levels. The tillering rates of both species increased with the N application. Nonetheless, only in P. cinerascens did the N application result in significant biomass increase. Such growth gain was a result of changes in leaf pigment, stomatal morphology, gas exchanges, and nutrients absorption that occurred mainly under the low N additions. Reaching optimum growth at 80 mg N dm-3, these plants showed no differences from those in the field. Our study demonstrates that an input of N as fertilizer can differentially improve the growth of native grasses and that P. cinerascens plants are able to deposit high quantities of carbon and protect soil over the seasons, thus, making them promising candidates for restoring nutrient cycling, accelerating the return of other species and ecosystem services.

12.
Mol Ecol Resour ; 21(1): 44-58, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32419278

RESUMEN

Despite the importance of climate-adjusted provenancing to mitigate the effects of environmental change, climatic considerations alone are insufficient when restoring highly degraded sites. Here we propose a comprehensive landscape genomic approach to assist the restoration of moderately disturbed and highly degraded sites. To illustrate it we employ genomic data sets comprising thousands of single nucleotide polymorphisms from two plant species suitable for the restoration of iron-rich Amazonian Savannas. We first use a subset of neutral loci to assess genetic structure and determine the genetic neighbourhood size. We then identify genotype-phenotype-environment associations, map adaptive genetic variation, and predict adaptive genotypes for restoration sites. Whereas local provenances were found optimal to restore a moderately disturbed site, a mixture of genotypes seemed the most promising strategy to recover a highly degraded mining site. We discuss how our results can help define site-adjusted provenancing strategies, and argue that our methods can be more broadly applied to assist other restoration initiatives.


Asunto(s)
Restauración y Remediación Ambiental , Genómica , Genotipo , Fenotipo , Adaptación Fisiológica , Estudios de Asociación Genética , Polimorfismo de Nucleótido Simple
13.
Sci Total Environ ; 753: 141934, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32889317

RESUMEN

Secondary forests emerging during traditional shifting cultivation practices are increasingly recognized for their fulfillment of ecosystem services and mitigation potential of climate change and biodiversity losses. The soil seed bank as a recruit reservoir is a limiting factor for natural forest regeneration of such secondary forests and is decisive for the formation and restitution of the post-disturbance community. The aim of this study was to compare the composition of the soil seed bank along a natural regeneration chronosequence from the Caxiuanã National Forest, eastern Amazon, including old-growth reference sites. We sampled standing vegetation, soil properties and soil seed banks and compared the density and species richness of different life forms among different regeneration stages. Using nonmetric, multiple scaling, we compared the composition of the soil seed bank among different regeneration stages and with standing vegetation composition. Furthermore, we outlined the influence of stand age, vegetation structure and soil properties on the density, richness and functional characterization of the soil seed bank using mixed effect models. The soil seed bank was dominated by herb seeds in all regeneration stages, and the density and richness of tree seeds increased with regeneration time and recovery of vegetation structure. Seed bank composition changed gradually with regeneration advance and differed from standing vegetation, containing a high amount of allochthonous seeds, especially in older stands. This observation highlights the importance of dispersal and habitat connectivity for the natural regeneration of these secondary forests. Shifts in soil seed bank composition towards slow-growing, animal-dispersed, non-pioneer species with larger, recalcitrant seeds in older regeneration stands indicate changes in vegetation composition along succession. Thus, our data indicate the importance of connectivity for forest regeneration and long fallow periods (> 40 years) to increase the performance of ecosystem services, resilience and stability of secondary forests arising during shifting cultivation practices.


Asunto(s)
Banco de Semillas , Suelo , Ecosistema , Bosques , Semillas , Árboles
14.
Microb Biotechnol ; 13(6): 1960-1971, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32812342

RESUMEN

Accelerating microbial iron cycling is an innovative environmentally responsible strategy for mine remediation. In the present study, we extend the application of microbial iron cycling in environmental remediation, to include biocementation for the aggregation and stabilization of mine wastes. Microbial iron reduction was promoted monthly for 10 months in crushed canga (a by-product from iron ore mining, dominated by crystalline iron oxides) in 1 m3 containers. Ferrous iron concentrations reached 445 ppm in treatments and diverse lineages of the candidate phyla radiation dominated pore waters, implicating them in fermentation and/or metal cycling in this system. After a 6-month evaporation period, iron-rich cements had formed between grains and 20-cm aggregates were recoverable from treatments throughout the 1-m depth profile, while material from untreated and water-only controls remained unconsolidated. Canga-adapted plants seeded into one of the treatments germinated and grew well. Therefore, application of this geobiotechnology offers promise for stabilization of mine wastes, as well as re-formation of surface crusts that underpin unique and threatened plant ecosystems in iron ore regions.


Asunto(s)
Restauración y Remediación Ambiental , Hierro , Cementación , Ecosistema , Minería
15.
Environ Monit Assess ; 192(6): 390, 2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32447464

RESUMEN

Impacted areas by iron mining may face challenges in the management of phosphate fertilization and reduced efficiency of rehabilitation practices, thus extending the time required for the rehabilitation of these areas. The objective of this study was to evaluate phosphorus (P) lability in soils of native forest and ferriferous canga areas (savanna vegetation above ironstone outcrops covering iron ore deposits) and in iron mine waste piles undergoing rehabilitation. Benches of the analysed waste pile differ in age of rehabilitation: as the initial rehabilitation stage (INI), we consider benches with fewer than 3 years of rehabilitation; the intermediate stage (INT) were benches with up to 5 years of rehabilitation; and the advanced rehabilitation stage (ADV) corresponds to benches with more than 8 years of rehabilitation activities. Organic and inorganic P fractions were analysed in these areas by chemical fractionation and were classified according to the degree of soil lability. The results show that in the canga environment, there was a predominance of inorganic fractions of moderate lability and moderate stability, with a strong dependency of the soil organic matter (SOM) on the P fractions, whereas there was a greater participation of the moderately labile organic fractions in the forest than in the canga. On the other hand, in the rehabilitation areas, there was an increase in the labile organic and inorganic fractions as the rehabilitation process advanced. The distribution of P in areas undergoing rehabilitation indicates that there is a tendency for P levels to resemble those of native environments, such as the forests.


Asunto(s)
Monitoreo del Ambiente , Hierro , Fósforo , Bosques , Suelo
16.
J Environ Manage ; 256: 109894, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31989973

RESUMEN

Despite the wide variety of variables commonly employed to measure the success of rehabilitation, the assessment and subsequent definition of indicators of environmental rehabilitation status are not simple tasks. The main challenges are comparing rehabilitated sites with target ecosystems as well as integrating individual environmental and eventually collinear variables into a single tractable measure for the state of a system before effective indicators that track rehabilitation may be modeled. Furthermore, a consensus is lacking regarding which and how many variables need to be surveyed for a reliable estimation of rehabilitation status. Here, we propose a multivariate ordination to integrate variables related to ecological processes, vegetation structure, and community diversity into a single estimation of rehabilitation status. As a case, we employed a curated set of 32 environmental variables retrieved from nonrevegetated, rehabilitating and reference sites associated with iron ore mines from the Urucum Massif, Mato Grosso do Sul, Brazil. By integrating this set of environmental variables into a single estimation of rehabilitation status, the proposed multivariate approach is straightforward and able to adequately address collinearity among variables. The proposed methodology allows for the identification of biases towards single variables, surveys or analyses, which is necessary to rank environmental variables regarding their importance to the assessment. Furthermore, we show that bootstrapping permitted the detection of the minimum number of environmental variables necessary to achieve reliable estimations of the rehabilitation status. Finally, we show that the proposed variable integration enables the definition of case-specific environmental indicators for more rapid assessments of mineland rehabilitation. Thus, the proposed multivariate ordination represents a powerful tool to facilitate the diagnosis of rehabilitating sites worldwide provided that sufficient environmental variables related to ecological processes, diversity and vegetation structure are gathered from nonrehabilitated, rehabilitating and reference study sites. By identifying deviations from predicted rehabilitation trajectories and providing assessments for environmental agencies, this proposed multivariate ordination increases the effectiveness of (mineland) rehabilitation.


Asunto(s)
Ecología , Ecosistema , Brasil , Empleo , Monitoreo del Ambiente , Minería
17.
Glob Chang Biol ; 26(2): 509-522, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31486174

RESUMEN

Tropical forests store large amounts of carbon and high biodiversity, but are being degraded at alarming rates. The emerging global Forest and Landscape Restoration (FLR) agenda seeks to limit global climate change by removing carbon dioxide from the atmosphere through the growth of trees. In doing so, it may also protect biodiversity as a free cobenefit, which is vital given the massive shortfall in funding for biodiversity conservation. We investigated whether natural forest regeneration on abandoned pastureland offers such cobenefits, focusing for the first time on the recovery of taxonomic diversity (TD), phylogenetic diversity (PD) and functional diversity (FD) of trees, including the recovery of threatened and endemic species richness, within isolated secondary forest (SF) fragments. We focused on the globally threatened Brazilian Atlantic Forest, where commitments have been made to restore 1 million hectares under FLR. Three decades after land abandonment, regenerating forests had recovered ~20% (72 Mg/ha) of the above-ground carbon stocks of a primary forest (PF), with cattle pasture containing just 3% of stocks relative to PFs. Over this period, SF recovered ~76% of TD, 84% of PD and 96% of FD found within PFs. In addition, SFs had on average recovered 65% of threatened and ~30% of endemic species richness of primary Atlantic forest. Finally, we find positive relationships between carbon stock and tree diversity recovery. Our results emphasize that SF fragments offer cobenefits under FLR and other carbon-based payments for ecosystem service schemes (e.g. carbon enhancements under REDD+). They also indicate that even isolated patches of SF could help to mitigate climate change and the biodiversity extinction crisis by recovering species of high conservation concern and improving landscape connectivity.


Asunto(s)
Ecosistema , Bosques , Animales , Biodiversidad , Brasil , Bovinos , Conservación de los Recursos Naturales , Filogenia , Clima Tropical
18.
Front Genet ; 10: 1011, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798621

RESUMEN

Although habitat loss has large, consistently negative effects on biodiversity, its genetic consequences are not yet fully understood. This is because measuring the genetic consequences of habitat loss requires accounting for major methodological limitations like the confounding effect of habitat fragmentation, historical processes underpinning genetic differentiation, time-lags between the onset of disturbances and genetic outcomes, and the need for large numbers of samples, genetic markers, and replicated landscapes to ensure sufficient statistical power. In this paper we overcame all these challenges to assess the genetic consequences of extreme habitat loss driven by mining in two herbs endemic to Amazonian savannas. Relying on genotyping-by-sequencing of hundreds of individuals collected across two mining landscapes, we identified thousands of neutral and independent single-nucleotide polymorphisms (SNPs) in each species and used these to evaluate population structure, genetic diversity, and gene flow. Since open-pit mining in our study region rarely involves habitat fragmentation, we were able to assess the independent effect of habitat loss. We also accounted for the underlying population structure when assessing landscape effects on genetic diversity and gene flow, examined the sensitivity of our analyses to the resolution of spatial data, and used annual species and cross-year analyses to minimize and quantify possible time-lag effects. We found that both species are remarkably resilient, as genetic diversity and gene flow patterns were unaffected by habitat loss. Whereas historical habitat amount was found to influence inbreeding; heterozygosity and inbreeding were not affected by habitat loss in either species, and gene flow was mainly influenced by geographic distance, pre-mining land cover, and local climate. Our study demonstrates that it is not possible to generalize about the genetic consequences of habitat loss, and implies that future conservation efforts need to consider species-specific genetic information.

19.
Sci Rep ; 9(1): 17383, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31758041

RESUMEN

The alarming rate of global pollinator decline has made habitat restoration for pollinators a conservation priority. At the same time, empirical and theoretical studies on plant-pollinator networks have demonstrated that plant species are not equally important for pollinator community persistence and restoration. However, the scarcity of comprehensive datasets on plant-pollinator networks in tropical ecosystems constrains their practical value for pollinator restoration. As closely-related species often share traits that determine ecological interactions, phylogenetic relationships could inform restoration programs in data-scarce regions. Here, we use quantitative bee-plant networks from Brazilian ecosystems to test if priority plant species for different restoration criteria (bee species richness and visitation rates) can be identified using interaction networks; if phylogenetic relationships alone can guide plant species selection; and how restoration criteria influence restored network properties and function. We found plant species that maximised the benefits of habitat restoration for bees (i.e., generalists and those with distinct flower-visitor species) were clustered in a small number of phylogenetically-diverse plant families, and that prioritising the recovery of bee visitation rates improved both stability and function of restored plant-pollinator networks. Our approach can help guide restoration of pollinator communities, even where information on local ecosystems is limited.


Asunto(s)
Ecosistema , Restauración y Remediación Ambiental/métodos , Variación Genética/fisiología , Plantas/clasificación , Plantas/genética , Polinización/fisiología , Animales , Abejas/fisiología , Brasil , Flores/clasificación , Flores/genética , Fenotipo , Filogenia , Densidad de Población
20.
Sci Data ; 6: 190008, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30747914

RESUMEN

Microorganisms are useful environmental indicators, able to deliver essential insights to processes regarding mine land rehabilitation. To compare microbial communities from a chronosequence of mine land rehabilitation to pre-disturbance levels from references sites covered by native vegetation, we sampled non-rehabilitated, rehabilitating and reference study sites from the Urucum Massif, Southwestern Brazil. From each study site, three composed soil samples were collected for chemical, physical, and metagenomics analysis. We used a paired-end library sequencing technology (NextSeq 500 Illumina); the reads were assembled using MEGAHIT. Coding DNA sequences (CDS) were identified using Kaiju in combination with non-redundant NCBI BLAST reference sequences containing archaea, bacteria, and viruses. Additionally, a functional classification was performed by EMG v2.3.2. Here, we provide the raw data and assembly (reads and contigs), followed by initial functional and taxonomic analysis, as a base-line for further studies of this kind. Further investigation is needed to fully understand the mechanisms of environmental rehabilitation in tropical regions, inspiring further researchers to explore this collection for hypothesis testing.


Asunto(s)
Monitoreo del Ambiente/métodos , Metagenómica/métodos , Microbiota , Microbiología del Suelo , Archaea/genética , Bacterias/genética , Brasil , Secuenciación de Nucleótidos de Alto Rendimiento , Hierro , Microbiota/genética , Minería , Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...